





#### **Programme**

Journée annuelle de l'Obésité - Vendredi 26 Novembre 2021

Amphithéâtre de pédiatrie HE1 Hôpital La Timone - AP-HM



# **RGO et Sleeve Gastrectomy**

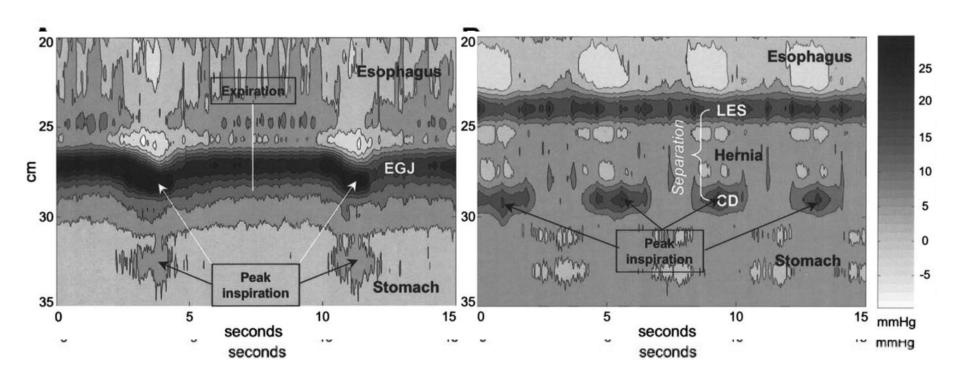


**Antonio IANNELLI, MD, PhD** 

# **Disclosures**

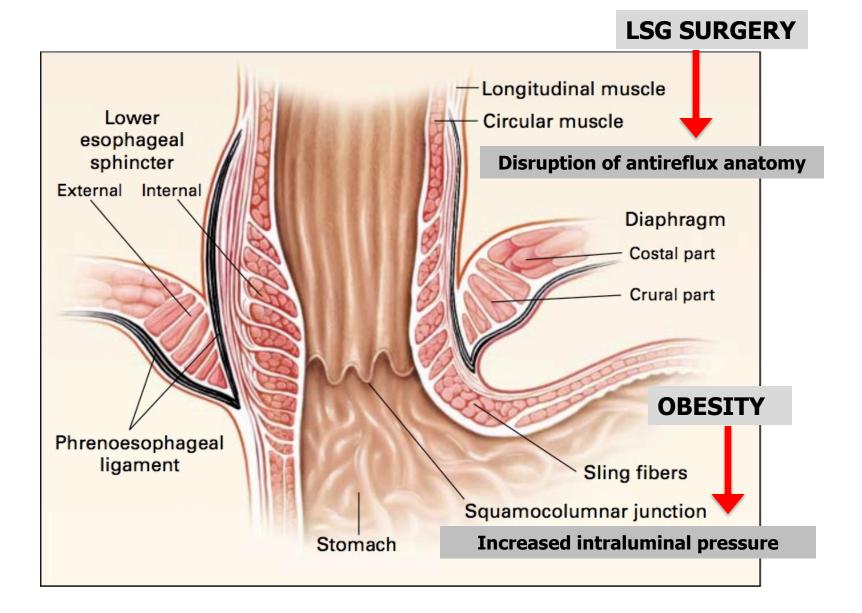
# **No conflict of interest**

# **Agenda**


Preamble GERD and SG: mechanisms and symptoms

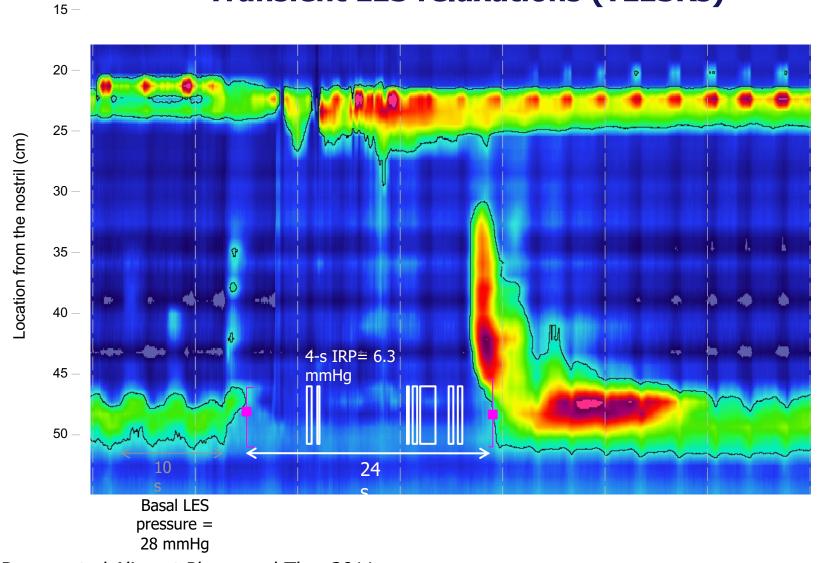
#### **Definition of GERD**

- Symptoms (heartburn, regurgitations ...)
- Questionnaires
- Endoscopy
  - Oesophagitis
  - Complications
    - Ulcerations (erosive oesophagitis)
    - Barretts esophagus (cancer)
- 24-h pH and impedance monitoring
- High resolution manometry


#### **Mechanisms of GERD**

Obesity and gastroesophageal junction: an increased risk of hiatal hernia

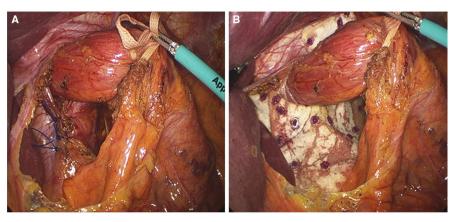



Correlation between BMI or waist circumference and distance from LES to diaphragm

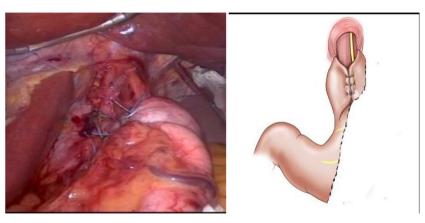
# **Effects of surgery on the EGJ**



#### **Mechanisms of GERD**


# **Transient LES relaxations (TLESRs)**




Pressure isocontour mmHg 150 100 50 14 -15

Roman et al Aliment Pharmacol Ther 2011

#### **SG and GERD**



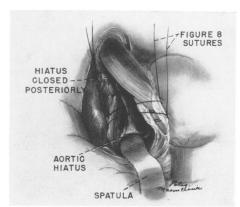
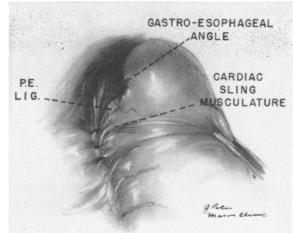
Fixing the hiatal hernia

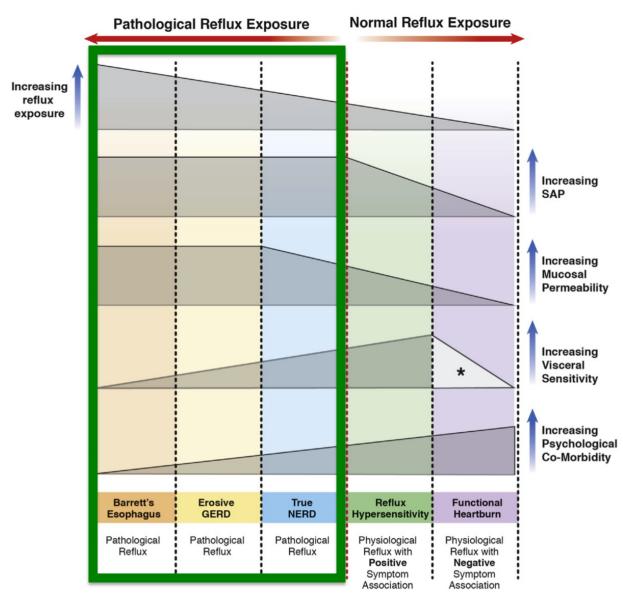


Adding an antireflux valve



Fig. 1 Ligamentum teres encircling the gastroesophageal junction at the angle of His, forming a *necktie* 



Fig. 4. Figure of 8 sutures including anterior and posterior cut edges of phrenoesophageal ligament placed deep into preaortic fascia with spatula protecting the aorta.



#### **Ligamentum teres Gastropexy**

#### **Hill's Gastropexy**

# **GERD**GERD is a complex disease



#### LSG and GERD

#### SG is not an antireflux procedure

Figure 1. Comparison of the Change in Reported Gastroesophageal Reflux Disease (GERD) Symptoms in the Laparoscopic Sleeve Gastrectomy (LSG) and Gastric Bypass (GB) Cohorts With Preoperatively Identified GERD

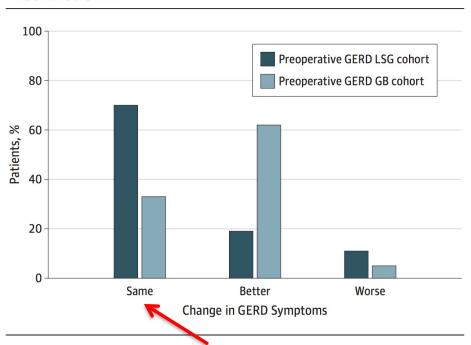
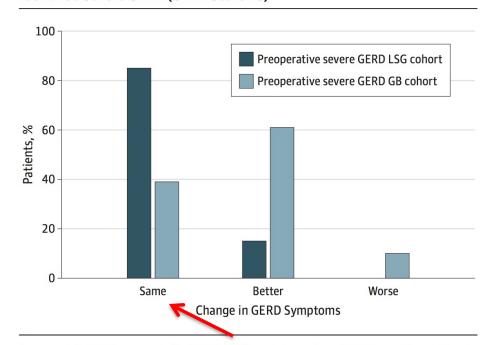




Figure 2. Comparison of the Change in Reported Gastroesophageal Reflux Disease (GERD) Symptoms in the Laparoscopic Sleeve Gastrectomy (LSG) and Gastric Bypass (GB) Cohorts With Preoperatively Identified Severe GERD (GERD Score ≥3)



New-onset GERD occurred in 8.6% of the preoperative GERD-negative patients in the LSG cohort.

### LSG and GERD

#### SG is not an antireflux procedure

#### Remission of GERD RYGP 60.5% vs SG 25%; p<0.002

| Gastroesophageal Refl  | ux                     |               |                        |                    |      |
|------------------------|------------------------|---------------|------------------------|--------------------|------|
| Comorbidity present at | 44/101 (43.6)          | 48/104 (46.2) | -0.03 (-0.17 to        | .71 <sup>d</sup>   |      |
| baseline               |                        |               | 0.12)                  |                    |      |
| Remission              | 11 (25)                | 29 (60.4)     | -0.36 (-0.57 to -0.15) | .0006 <sup>d</sup> | .002 |
| Improved               | 4 (9.1)                | 3 (6.3)       | 0.10 (-0.36 to 0.56)   | .71 <sup>e</sup>   | .94  |
| Unchanged              | 15 (34.1)              | 13 (27.1)     | 0.08 (-0.16 to 0.33)   | .47 <sup>d</sup>   | .94  |
| Worsened               | 14 (31.8) <sup>a</sup> | 3 (6.3)       | 0.36 (0.13 to 0.59)    | .002 <sup>e</sup>  | .006 |

#### Conversion of LSG to LRYGP for GERD

#### Mean follow-up of 8.48 years (range 6.1–10.3)

 Table 2
 Preoperative gastro-intestinal comorbidities and PPI use

| Gastroesophageal hernia <sup>a</sup> |               | 35/97 (36.1%) |
|--------------------------------------|---------------|---------------|
| Oesophagitis <sup>b</sup>            | Absent        | 44/100 (44%)  |
|                                      | Grade A       | 44/100 (44%)  |
|                                      | Grade B       | 6/100 (6%)    |
|                                      | Grade C       | 0/100 (0%)    |
|                                      | Grade D/Ulcus | 3/100 (3%)    |
|                                      | Unknown       | 3/100 (3%)    |
| Reflux disease <sup>c</sup>          |               | 17/84 (20.2%) |
| PPI use                              |               | 15/84 (17.6%) |
|                                      |               |               |

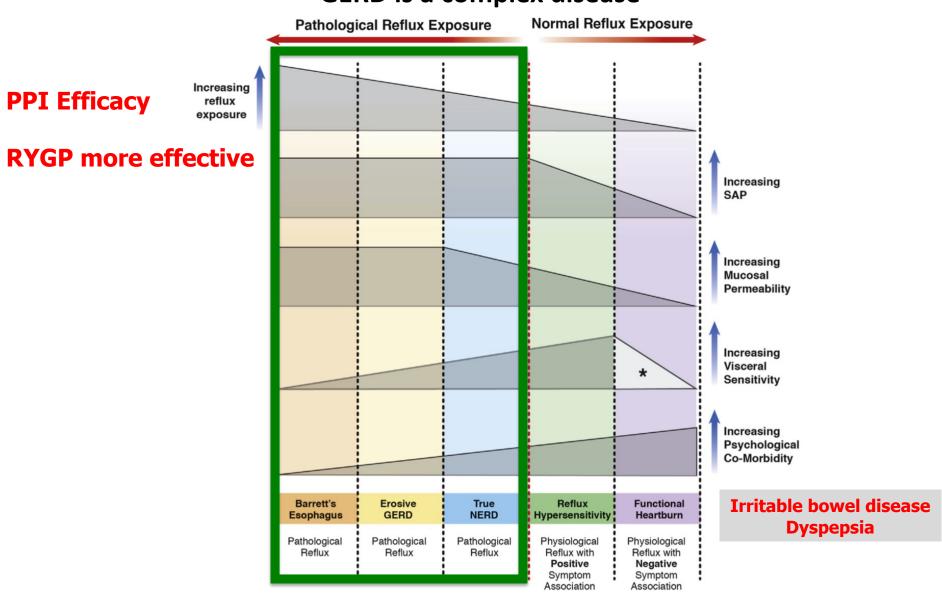
<sup>&</sup>lt;sup>a</sup> Endoscopic diagnosis

Table 4 Evolution of reflux disease and PPI use

|                | Preoperative | Postoperative | p value  |
|----------------|--------------|---------------|----------|
| Reflux disease | 17 (17%)     | 44 (52%)      | < 0.0001 |
| PPI use        | 15 (15%)     | 40 (47%)      | < 0.0001 |

| Number of patients (%) |
|------------------------|
| 26 (100%)              |
| 19 (73.1%)             |
| 5 (19.2%)              |
| 2 (7.7%)               |
|                        |

7 Pts (7% total and 26% of conversions) converted to LRYGB for GERD


LRYGB effective in 4 out of 7 Pts (57,1%) to relieve completely patients from GERD

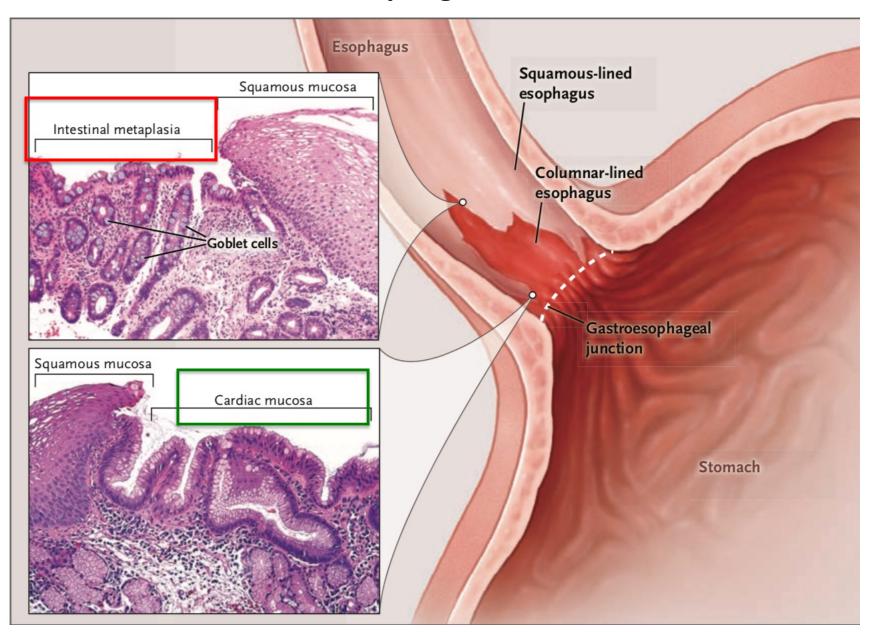
<sup>&</sup>lt;sup>b</sup> Los Angeles Classification

<sup>&</sup>lt;sup>c</sup> Symptom reporting

#### **GERD**

#### **GERD** is a complex disease




Tack and Pandolfino Gastroenterology 2018

# **Agenda**

**Preamble** 

**GERD and SG: mechanisms and symptoms Barrett's esophagus** 

# Barrett's esophagus: definition



# **Barrett's esophagus**

#### **Prague classification**

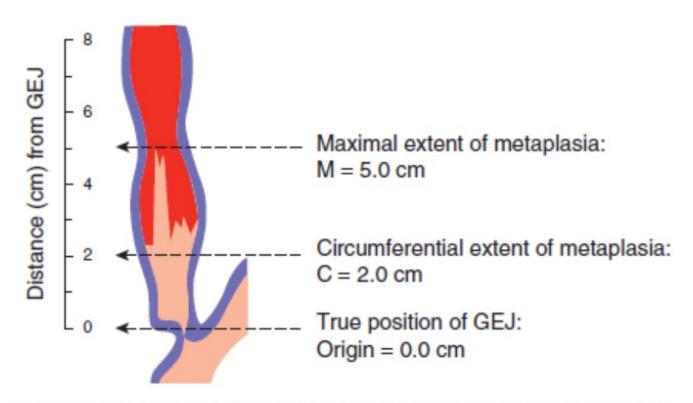



Figure 1. Illustration of Prague Classification for Barrett's esophagus (BE) where C indicates circumferential extent of metaplasia and M indicates maximal extent of metaplasia. Schema shows a C2M5 segment with identification of the gastroesophageal junction (GEJ) below the squamo-columnar junction. Reprinted with permission (24).

#### Shaheen et al Am J Gastroenterol

# **Barrett's esophagus**

| Table 1. Proposed Risk Factors and Protective Factors for Barrett's Esophagus and Esophageal Adenocarcinoma.* |                                              |                                                    |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------------|--|--|--|--|
| Factor                                                                                                        | Risk Factor for                              | Risk Factor for Esophageal Adenocarcinoma          |  |  |  |  |
|                                                                                                               | Barrett's Esophagus                          |                                                    |  |  |  |  |
| Older age                                                                                                     | Yes                                          | Yes                                                |  |  |  |  |
| White race                                                                                                    | Yes                                          | Yes                                                |  |  |  |  |
| Male sex                                                                                                      | Yes                                          | Yes                                                |  |  |  |  |
| Chronic heartburn                                                                                             | Yes                                          | Yes                                                |  |  |  |  |
| Age <30 yr at onset of GERD symptoms                                                                          | Yes                                          | ·                                                  |  |  |  |  |
| Hiatal hernia                                                                                                 | Yes                                          | Yes                                                |  |  |  |  |
| Erosive esophagitis                                                                                           | Yes                                          | Yes                                                |  |  |  |  |
| Obesity with intraabdominal fat distribution                                                                  | Yes                                          | Yes                                                |  |  |  |  |
| Metabolic syndrome                                                                                            | Yes                                          | Yes                                                |  |  |  |  |
| Tobacco use                                                                                                   | Yes                                          | Yes                                                |  |  |  |  |
| Family history of GERD, Barrett's esophagus, or esophageal adenocarcinoma                                     | Yes                                          | Yes                                                |  |  |  |  |
| Obstructive sleep apnea                                                                                       | Yes                                          | _                                                  |  |  |  |  |
| Low birth weight for gestational age                                                                          | Yes                                          | No                                                 |  |  |  |  |
| Preterm birth                                                                                                 | No                                           | Yes                                                |  |  |  |  |
| Consumption of red meat and processed meat                                                                    | Yes                                          | Yes                                                |  |  |  |  |
| Human papillomavirus infection                                                                                | No                                           | Yes                                                |  |  |  |  |
|                                                                                                               | Protective Factor for<br>Barrett's Esophagus | Protective Factor for Esophageal<br>Adenocarcinoma |  |  |  |  |
| Use of nonsteroidal antiinflammatory drugs                                                                    | Yes                                          | Yes                                                |  |  |  |  |
| Use of statins                                                                                                | Yes                                          | Yes                                                |  |  |  |  |
| Helicobacter pylori infection                                                                                 | Yes                                          | Yes                                                |  |  |  |  |
| Diet high in fruits and vegetables                                                                            | Yes                                          | Yes                                                |  |  |  |  |
| Exposure to ambient ultraviolet radiation                                                                     | _                                            | Yes                                                |  |  |  |  |
| Breast-feeding for parous women                                                                               | _                                            | Yes                                                |  |  |  |  |
| Tall height                                                                                                   | Yes                                          | Yes                                                |  |  |  |  |

# Agenda

**Preamble** 

**GERD and SG: mechanisms and symptoms Barrett's esophagus** 

The REFSLEEVE Study

Obesity Surgery (2019) 29:1462–1469 https://doi.org/10.1007/s11695-019-03704-y



#### ORIGINAL CONTRIBUTIONS



# Systematic Endoscopy 5 Years After Sleeve Gastrectomy Results in a High Rate of Barrett's Esophagus: Results of a Multicenter Study

Published online: 21 January 2019

© Springer Science+Business Media, LLC, part of Springer Nature 2019



| 110 patients     | Pre-operative  | Follow-up      | р      |
|------------------|----------------|----------------|--------|
| GERD symptoms    | 33.6% (37 Pts) | 68.1 % (75     | <.0001 |
|                  |                | Pts)           |        |
| VAS Score        | 1.8            | 3              | .018   |
| Daily PPI intake | 19.1% (21 Pts) | 57.2% (63 Pts) | <.0001 |
| Class A          | 12.7% (14 Pts) | 46.3% (51 Pts) | <.0001 |
| esophagitis      |                |                |        |
| Class B          | 8.1% (9 Pts)   | 32.7% (36 Pts) | <.0001 |
| esophagitis      |                |                |        |
| Class C          | 3.6% (4 Pts)   | 11.8% (13 Pts) | .04    |
| esophagitis      |                |                |        |
| Class D          | 0              | 9.1% (10 Pts)  | .0016  |
| esophagitis      |                |                | 2      |
| Barrett's        | 0              | 17.2% (19 Pts) | <.0001 |
| Esophagus        |                |                |        |

(GERD: Gastro-esophageal reflux disease; VAS: Visual Analog Scale; PPI: Proton pump inhibitors)

**Table 1** Endoscopic and histologic upper-GI findings at 10 years after SG

| Gastroscopy macroscopic          | Non-converted $(n = 20)$ | Symptomatic reflux $(n = 10)$ | Non-symptomatic reflux $(n = 10)$ | p value |
|----------------------------------|--------------------------|-------------------------------|-----------------------------------|---------|
| Fundus residual (%)              | 20                       | 10                            | 30                                | 0.29    |
| Hiatal hernia (%)                | 45                       | 70                            | 20                                | 0.02    |
| Bile in the stomach (%)          | 25                       | 20                            | 30                                | 0.63    |
| Enlarged sleeve (%) <sup>a</sup> | 60                       | 70                            | 50                                | 0.39    |
| Gastritis and ulcers (%)         | 45                       | 50                            | 40                                | 0.67    |
| Esophagitis (%)                  | 30                       | 50                            | 10                                | 0.05    |
| CLE (GE junction) (%)            | 50                       | 70                            | 30                                | 0.08    |
| Mean size (mm) <sup>b</sup>      | 3.5 (R 2–5)              | 4.0 (R 3–5)                   | 2.3 (R 2–3)                       | 0.01    |
| Chronic gastritis (%)            | 80                       | 90                            | 70                                | 0.29    |
| Active gastritis (%)             | 45                       | 40                            | 50                                | 0.67    |
| Dysplasia (%)                    | 0                        | 0                             | 0                                 | N/A     |
| Barrett's esophagus (%)          | 15                       | 10                            | 20                                | 0.56    |
| Acanthosis/parakeratosis (%)     | 20                       | 30                            | 10                                | 0.29    |
| Hyperregeneratory                |                          |                               |                                   |         |
| esophagopathy (%)                | 60                       | 70                            | 50                                | 0.39    |
| Helicobacter pylori (%)          | 15                       | 10                            | 20                                | 0.56    |

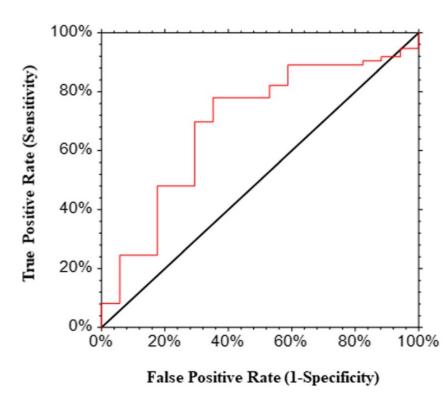
SG sleeve gastrectomy, CLE columnar lined esophagus, GE gastroesophageal

<sup>&</sup>lt;sup>a</sup> Enlarged sleeve was defined as inversion with a gastroscope equaling a 5-cm diameter

 $<sup>^{\</sup>rm b} n = 10$ 

**Table 1** Patients' characteristics before the SG and at the time of follow-up

| Patients' characteristics      | Before SG  | Follow-<br>up | p        |
|--------------------------------|------------|---------------|----------|
| Patients (N)                   | 90         | 90            | _        |
| Sex ratio male/female (%)      | 24/66 (73) | _             | -        |
| Age, SD                        | $41\pm11$  | $48\pm11$     | -        |
| Time of follow-up (months), SD | -          | $78\pm15$     | -        |
| Body weight (kg), SD           | $127\pm24$ | $94\pm22$     | < 0.0001 |
| BMI $(kg/m^2)$ , SD            | $46\pm 8$  | $34\pm 8$     | < 0.0001 |
| TBWL %, SD                     | _          | $25\pm12$     | _        |
| EBWL %, SD                     | _          | $58 \pm 27$   | -        |
| Barrett's $N(\%)$              | 0          | 17 (18.8)     | -        |
| GERD N (%)                     | 20 (22)    | 68 (76)       | < 0.0001 |
| Patients on PPI $N$ (%)        | 20 (22)    | 46 (52)       | < 0.0001 |
| Esophagitis $N(\%)$            | 9 (10)     | 37 (41)       | < 0.0001 |


P value was calculated for quantitative or qualitative variables with Student's and  $\chi^2$  test, respectively (p < 0.05)

SG sleeve gastrectomy, N number of patients, SD standard deviation, BMI body mass index, TBWL total body weight loss, EBWL excess body weight loss (calculated with a 25 kg/m<sup>2</sup> as ideal BMI), GERD gastroesophageal reflux, PPI proton pump inhibitor

**Table 5** Logistic regression analyses to identify factors associated to Barrett's esophagus 5 years after SG. OR odds ratio, CI 95% confidence limits 95%

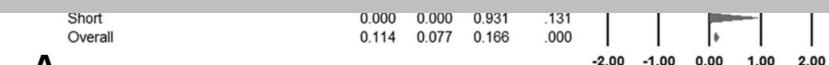
| Patients' characteristics | Adjusted OR | CI 95%     | p      |
|---------------------------|-------------|------------|--------|
| Weight loss failure*      | 6.7         | 1.7–25.7   | < 0.01 |
| Age 30 to 39 (ref. 18–29) | 1.2         | 0.2 - 8.7  | 0.83   |
| Age 40 to 49 (ref. 18–29) | 1.6         | 0.2 - 11.8 | 0.76   |
| Age $> 50$ (ref. 18–29)   | 1.8         | 0.2 - 13.1 | 0.61   |
| Women (ref. men)          | 1.1         | 0.3-4.8    | 0.88   |
| GERD symptoms at baseline | 0.5         | 0.1-2.6    | 0.39   |
| Esophagitis               | 1.7         | 0.5 - 6.2  | 0.39   |
| PPI intake                | 0.4         | 0.1-1.7    | 0.23   |

SG sleeve gastrectomy, N number of patients, GERD gastroesophageal reflux, PPI proton pump inhibitor, ref reference



**Fig. 2** Receiver operating characteristic (ROC) curves for the diagnosis of Barrett's esophagus. The excess weight loss (EWL) cutoff with the highest sensitivity and specificity for the detection of Barret's esophagus (BE) was 48.1%. At this threshold, sensitivity, specificity, likelihood ratio positive, likelihood ratio negative, and index of Youden were 0.78, 0.65, 2.21, 0.34, and 0.43, respectively

<sup>\*</sup>Weight loss failure defined by excess body weight loss < 50%


| Study                                   | Time to EGD or follow-up time | No. of patients | No. with | BE with   | BE without<br>GERD | Type<br>of BE | Preop<br>EE | Postop<br>EE | Definition<br>of GERD                                   |
|-----------------------------------------|-------------------------------|-----------------|----------|-----------|--------------------|---------------|-------------|--------------|---------------------------------------------------------|
| Sebastianelli et al, 2019 <sup>15</sup> |                               | 90              | 17       | 16 of 68  | 1 of 22            | NDBE          | 9           | 37           | Montreal Consensus                                      |
| Felsenreich et al, 2017 <sup>17</sup>   | 10 years                      | 20              | 3        | 1 of 10   | 2 of 10            | NDBE          | NA          | 6            | Reflux Symptoms Index                                   |
| Soricelli et al, 2018 <sup>19</sup>     | 66 (41-89)<br>months          | 144             | 19       | 15 of 101 | 4 of 43            | NDBE          | NA          | 86           | Visual Analog Scale                                     |
| Elkassem, 2018 <sup>22</sup>            | At least 3 year               | 21              | 3        | NA        | NA                 | NA            | 10          | 16           | NC                                                      |
| Tai and Huang, 2013 <sup>27</sup>       | 12 (12-21)<br>months          | 66              | 0        | -         | -                  | -             | 11          | 44           | Reflux Disease<br>Questionnaire                         |
| Sharma et al, 2014 <sup>20</sup>        | 6 months                      | 32              | 0        | -         | -                  | _             | 6           | 8            | Scintigraphy, Severity<br>Symptoms, and Carlson<br>Dent |
| Viscido et al, 2018 <sup>21</sup>       | 18 months                     | 109             | 0        | -         | -                  | -             | 22          | 37           | Montreal Consensus                                      |
| Csendes et al, 2019 <sup>23</sup>       | 95 $\pm$ 15 months            | 104             | 4        | -         | _                  | -             | 14          | 33           | Burning symptoms                                        |
| Dimbezel et al, 2020 <sup>24</sup>      | 62.4 months                   | 40              | 4        | -         | -                  | -             | 1           | 18           | No clearly defined preop                                |
| Lallemand et al, 2019 <sup>25</sup>     | 5 years                       | 54              | 4        | 1-        | -                  | -             | _           | -            | Unclear                                                 |

#### Prevalence of BE in studies with follow-up esophagogastroduodenoscopy

| Group by  | Study name         | Statistics for each study |                |                |         | Event rate and 95% CI |  |  |
|-----------|--------------------|---------------------------|----------------|----------------|---------|-----------------------|--|--|
| Follow up |                    | Event rate                | Lower<br>limit | Upper<br>limit | P Value |                       |  |  |
| Long      | Sebastianelli 2019 | 0.189                     | 0.121          | 0.283          | .000    |                       |  |  |
| Long      | Felsenreich 2017   | 0.150                     | 0.049          | 0.376          | .006    |                       |  |  |
| Long      | Soricelli 2018     | 0.132                     | 0.086          | 0.198          | .000    |                       |  |  |
| Long      | Elkassem 2018      | 0.143                     | 0.047          | 0.361          | .004    | -                     |  |  |
| Lona      | Csendes 2019       | 0.038                     | 0.015          | 0.098          | .000    |                       |  |  |

Pooled prevalence of BE =  $\frac{11.4\%}{95\%}$  (95% CI, 7.7%-16.6%; P < .001)

#### No significant heterogeneity in the model with $I^2$ Z 28.7% (Q = 12.6, P = .18)



A

# Agenda

**Preamble** 

**GERD and SG: mechanisms and symptoms Barrett's esophagus** 

The REFSLEEVE Study

**Barrett's and HGD (after SG)** 

# **ADK and HGD in Barrett's esophagus**

| Table 3. Incidence of High-Grade Dysplasia | hagus.* 0.26                                                                 | <mark>5%/yr ADK + I</mark> | HGD                         |                                           |                        |                                              |
|--------------------------------------------|------------------------------------------------------------------------------|----------------------------|-----------------------------|-------------------------------------------|------------------------|----------------------------------------------|
| Variable                                   | No. of Cases of High-Grade<br>Dysplasia or Adenocarcinoma<br>in Study Cohort | Person-Yr<br>of Risk       | No. of<br>Expected<br>Cases | Incidence Rate/1000 Person-Yr<br>(95% CI) |                        | Standardized<br>Incidence Ratio<br>(95% CI)† |
|                                            |                                                                              |                            |                             | Study Cohort                              | General Population     |                                              |
| Total cases                                | 148                                                                          | 56,151                     | 7.0                         | 2.6 (2.2–3.1)                             | 0.035 (0.034-0.036)    | 21.1 (17.8–24.7)                             |
| Sex                                        |                                                                              |                            |                             |                                           |                        |                                              |
| Female                                     | 29                                                                           | 18,891                     | 0.9                         | 1.5 (1.1–2.2)                             | 0.015 (0.014-0.016)    | 33.9 (22.7-48.7)                             |
| Male                                       | 119                                                                          | 37,260                     | 6.2                         | 3.2 (2.7–3.8)                             | 0.056 (0.054-0.058)    | 19.3 (16.0-23.1)                             |
| Age                                        |                                                                              |                            |                             |                                           |                        |                                              |
| 30–49 yr                                   | 7                                                                            | 9,696                      | 0.1                         | 0.7 (0.3-1.5)                             | 0.0031 (0.0027-0.0036) | 71.6 (28.7–147.6)                            |
| 50–69 yr                                   | 76                                                                           | 26,561                     | 2.6                         | 2.9 (2.3-3.6)                             | 0.065 (0.062-0.069)    | 28.7 (22.6–36.0)                             |
| ≥70 yr                                     | 65                                                                           | 19,894                     | 4.3                         | 3.3 (2.6-4.2)                             | 0.16 (0.15-0.17)       | 15.2 (11.7–19.3)                             |
| Low-grade dysplasia                        |                                                                              |                            |                             |                                           |                        |                                              |
| Present on index endoscopy                 | 32                                                                           | 2,525                      | 0.4                         | 12.7 (9.0–17.9)                           | NA                     | 75.9 (51.9–107.2)                            |
| Absent on index endoscopy                  | 116                                                                          | 53,625                     | 6.6                         | 2.2 (1.8–2.6)                             | NA                     | 17.6 (14.5–21.1)                             |
| Occurring at any time during follow-up     | 55                                                                           | 3,760                      | 0.6                         | 14.6 (11.2–19.1)                          | NA                     | 89.0 (67.0–115.8)                            |

<sup>\*</sup> Events during the first year after the endoscopy were excluded from the calculations. Included are all the cases diagnosed during the period after the first year through year 17 of follow-up (i.e., from 1993 through 2009). NA denotes not available.

<sup>†</sup>The standardized incidence ratio was calculated as the observed number of events in the cohort with Barrett's esophagus divided by the expected number of events in the general population.

# **ADK and HGD in Barrett's esophagus**

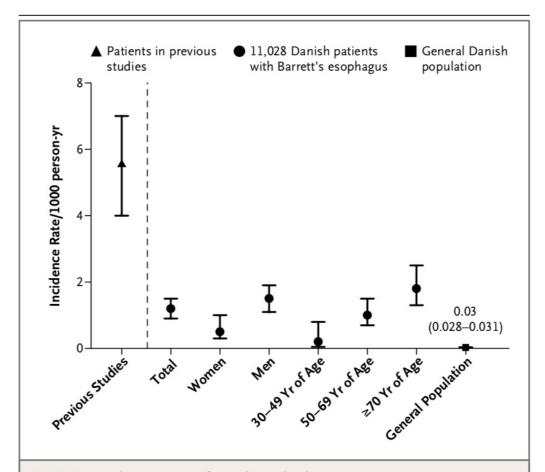
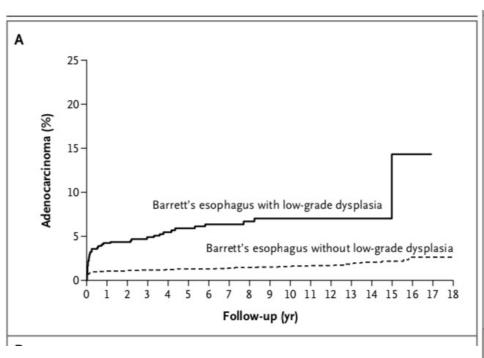




Figure 1. Incidence Rates of Esophageal Adenocarcinoma.

Incidence rates of esophageal adenocarcinoma are shown in a cohort of 11,028 Danish patients with Barrett's esophagus, as compared with mean incidence rates in the Danish general population and with mean incidence rates from previous international studies.<sup>9,17,24,25</sup> I bars indicate 95% confidence intervals.

# **ADK and HGD in Barrett's esophagus**

#### Low grade dysplasia at diagnosis as a negative prognostic factor



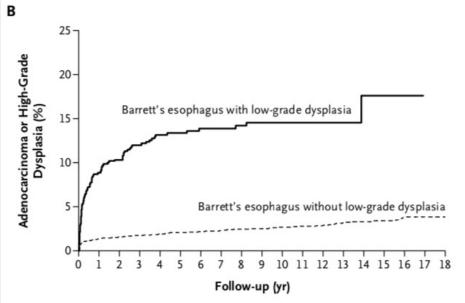



Figure 2. Cumulative Incidence of Esophageal Adenocarcinoma and of Esophageal Adenocarcinoma or High-Grade Dysplasia.

Shown is the cumulative incidence of esophageal adenocarcinoma (Panel A) and of esophageal adenocarcinoma or high-grade dysplasia (Panel B) among patients with Barrett's esophagus, according to the presence or absence of low-grade dysplasia on baseline endoscopy. Kaplan–Meier plots include data from the first year after the index endoscopy.

# **ADK** in patients with **SG**

OBES SURG (2019) 29:2660–2669 2667

Table 4 Histology of each recorded lesion and the original bariatric procedure performed

| Features                    | VBG | Open VBG | LSG | LAGB | Open AGB | LRYGBP | Open RYGBP | MGB/OAGB | BPD |
|-----------------------------|-----|----------|-----|------|----------|--------|------------|----------|-----|
| Tumor histology             |     |          |     |      |          |        |            |          |     |
| Adenocarcinoma of stomach   | 2   |          | 3   | 1    |          | 3      |            | 1        |     |
| Adenocarcinoma of esophagus | 1   | 2        | 1   | 12   | 3        | 6      | 2          |          | 1   |
| GIST                        |     |          | 1   |      |          | 1      |            |          |     |
| Tumor location              |     |          |     |      |          |        |            |          |     |
| Esophagus                   |     | 2        |     | 1    | 3        |        | 2          |          |     |
| Mid-esophagus               |     |          |     |      |          | 1      |            |          |     |
| Lower third esophagus       |     |          |     | 10   |          | 5      |            |          | 1   |
| Siewert II                  | 1   |          | 2   | 1    |          |        |            |          |     |
| Gastric pouch               |     |          |     |      |          | 1      |            |          |     |
| Body and antrum of stomach  |     |          | 1   |      |          |        |            |          |     |
| Antrum of stomach           | 2   |          | 1   | 1    |          |        |            |          |     |
| Excluded stomach            |     |          |     |      |          | 3      |            | 1        |     |
| Total                       | 3   | 2        | 5   | 13   | 3        | 10     | 2          | 1        | 1   |

VBG vertical banded gastroplasty, LSG laparoscopic sleeve gastrectomy, LAGB laparoscopic adjustable gastric banding, AGB adjustable gastric banding, LRYGBP laparoscopic Roux-en-Y gastric bypass, MGB/OAGB mini-/one-anastomosis gastric bypass, BPD bilio-pancreatic diversion

#### Musella et al Obes Surg 2019

# The magnitude of the problem

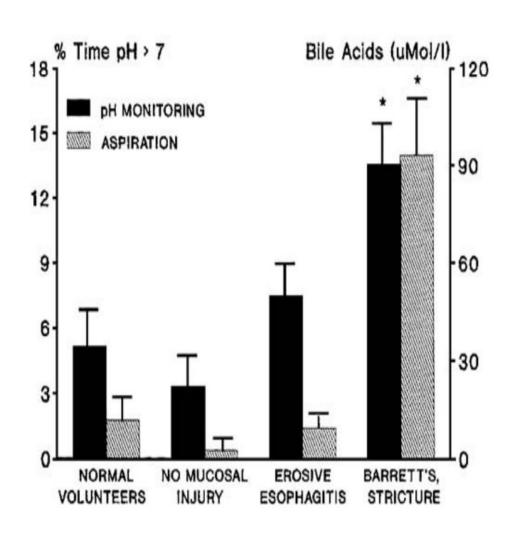
TABLE 2. Postoperative Procedures, Diagnoses, Prescriptions, Re-Hospitalizations, and GERD

Summary of Cohort 91 to 1825 Days, Post-Op

n = 16,724

|                                            | R    | YGB    | 7           |             |         |  |
|--------------------------------------------|------|--------|-------------|-------------|---------|--|
| N                                          | 8362 | 50.0%  | 8362        | 50.0%       | Ps      |  |
| Procedures                                 |      |        |             |             |         |  |
| Esophagogastroduodenoscopy                 | 2442 | 29.2%  | 1798        | 21.5%       | < 0.001 |  |
| Esophagoscopy                              | 31   | 0.4%   | 31          | 0.4%        | ~1.0    |  |
| pH monitoring study                        | 32   | 0.4%   | 59          | 0.7%        | 0.006   |  |
| Manometry                                  | 73   | 0.9%   | 102         | 1.2%        | 0.03    |  |
| Diagnoses                                  |      |        |             |             |         |  |
| Peptic or esophageal ulcer                 | 1990 | 23.8%  | 1601        | 19.1%       | < 0.001 |  |
| Gastrojejunal ulcer                        | 525  | 6.3%   | 37          | 0.4%        | < 0.001 |  |
| Esophageal cancer                          | 33   | 0.4%   | 40          | 0.5%        | 0.48    |  |
| New acid-treating prescription(s)          | 077  | 8.1%   | <b>5</b> 11 | 0.1%        | < 0.001 |  |
| Re-hospitalization                         | 3254 | 38.9%  | 2415        | 28.9%       | < 0.001 |  |
| Re-hospitalization; count                  |      |        |             |             |         |  |
| Mean                                       | 0.8  |        | 0.6         |             | < 0.001 |  |
| SD                                         | 1.9  |        | 1.5         |             |         |  |
| Median                                     | 0    |        | 0           |             |         |  |
| Re-hospitalization; average length of stay |      |        |             |             |         |  |
| Mean                                       | 1.5  |        | 1.3         |             | < 0.001 |  |
| SD                                         | 3.6  |        | 6.9         |             |         |  |
| Median                                     | 0    |        | 0           |             |         |  |
| GERD                                       | 4650 | 55.6%  | 5038        | 60.2%       | < 0.001 |  |
| New acid-treating prescription(s)          | 519  | 6.2%   | 397         | 4.7%        | < 0.001 |  |
| Barrett esophagus                          | 93   | 1.1%   | 60          | 0.7%        | 0.007   |  |
| Reflux esophagitis                         | 542  | 6.5%   | 525         | 6.3%        | 0.59    |  |
| Esophageal reflux                          | 4015 | 48.0%  | 4453        | 53.3%       | < 0.001 |  |
| De novo GERD                               |      |        |             |             |         |  |
| Patients with no preoperative GERD         | 1906 | 22.8%  | 1665        | 19.9%       | < 0.001 |  |
| New acid-treating prescription(s)          | 113  | 5.9%*  | 76          | $4.6\%^{*}$ | 0.07    |  |
| Barrett esophagus                          | <11  | <0.6%* | <11         | <0.7%*      | ~1.0    |  |
| Reflux esophagitis                         | 67   | 3.5%*  | 57          | 3.4%*       | 0.88    |  |
| Esophageal reflux                          | 672  | 35.3%* | 655         | 39.3%*      | 0.01    |  |

SD indicates standard deviation.


<sup>\*</sup>Condition is a subset of the first row in the section only.

# The magnitude of the problem

| (year)             | SG (N of Pt | s = 257890)      | RYGB (N of P | ts = 122761) |  |
|--------------------|-------------|------------------|--------------|--------------|--|
|                    | N of EC     | C Inc (%)        | N of EC      | C Inc (%)    |  |
| 2011               | 9           | 0.003            | 5            | 0.004        |  |
| 2012               | 5           | 0.001            | 4            | 0.001        |  |
| 2013               | 11          | 0.001            | 3            | 0.001        |  |
| 2014               | <b>- 1</b>  |                  | ·            |              |  |
| 2015               | :sopnage    | eai cancer       | incidence    | in France    |  |
| 2016               | (s          | <b>source PM</b> | SI 2011-20   |              |  |
| 2017 <mark></mark> | •           |                  | and RYGP     |              |  |
| 2018               |             | 0.0270 30        | allu KIGP    |              |  |
| 2019               | 1           | 0.002            | 0            | 0.002        |  |
| 2020               | 3           | 0.002            | 1            | 0.002        |  |

SG (Sleeve gastrectomy); RYGB (Roux-en-Y gastric bypass); EC (Esophageal Cancer); N (Number); Pts (Patients undergoing bariatric surgery). C Inc (Cumulative incidence).

# Bile reflux effect on esophageal mucosa



Using prolonged *Ambulatory aspiration* in the distal esophagus, it can be shown that patients who have **GERD** and **Barrett's esophagus** have greater and more concentrated bile acid exposure to the esophageal mucosa than normal subjects

# Bile reflux effect on esophageal mucosa

BARRETT'S ESOPHAGUS

1052 - 3359 / 02 \$15.00 + .00

## ROLE OF ACID AND BILE IN THE GENESIS OF BARRETT'S ESOPHAGUS

Werner K.H. Kauer, MD, and Hubert J. Stein, MD

There is a critical pH range (3-6) in which bile acids exist in their soluble, un-ionized form; can penetrate cell membranes and accumulate within mucosal cells. At a lower pH, bile acids are precipitated, and at a higher pH, bile acids exist in their non-injurious ionized form.

Thus, incomplete gastric acid suppression, as is the case with most medical treatment regimens for gastroesophageal reflux, may in fact predispose to the development of Barrett's esophagus.

# Non acid GERD and omega loop bypass

Acid and non-acid gastro-esophageal reflux following single anastomosis gastric bypass. An objective assessment using 24H multichannel intraluminal impedance- phmetry

Doulami Georgia, Triantafyllou Stamatina, Albanopoulos Konstantinos, Natoudi Maria, Zografos Georgios, Theodorou Dimitrios



# Doing a omega bypass after a SG is a non-sense CONCLUSION. The use of symptom questionnaires in order to assess postoperative

GERD following SaGB may not accurately depict the real image. 24h MIIpH in 12 months following SaGB revealed an increase of total number of non-acid reflux episodes and a decrease of total number of acid reflux episodes, with longer duration of each acid reflux episode. Close postoperative follow up with reflux testing and possibly endoscopy could eliminate the risk of complicated GERD.

# Agenda


Preamble
GERD
Barrett's esophagus

The REFSLEEVE Study

Barrett's and HGD + ADK (after SG)

What to do in case of Barrett's after SG?

# **EBO** complicating SG



#### No dysplasia:

- -PPI Surveillance (2, 3, **5 yrs**)
  2 yrs >6cm; 3 yrs 3-6cm; 5yrs<3cm
- -RYGP (symptoms, WL Failure)

#### If low grade dysplasia?

- -PPI X 2
- -Surveillance (6 months X2 then yearly)
- -Mucosectomy, RxF?
- -RYGP (symptoms, WL failure)?

#### If high grade dysplasia?

- -Mucosectomy and/or RxF
- -Surveillance, PPi?
- -RYGP?

# **Barrett's Esophagus and the RYGP**

**Table 1.** Endoscopic and histologic findings at the distal esophagus before and after gastric bypass for morbid obesity in patients with Barrett's esophagus or intestinal metaplasia of the cardia

|           | ВМІ     |                          | T1                          | Endosc               | Endoscopy         |                      | Histological findings |                     |                      |                   | H pylori at columnar mucosa |                          |    |
|-----------|---------|--------------------------|-----------------------------|----------------------|-------------------|----------------------|-----------------------|---------------------|----------------------|-------------------|-----------------------------|--------------------------|----|
| Sex       | Sex Age | BMI<br>before<br>surgery | after<br>surgery<br>(24 mo) | Length<br>BE<br>(mm) | Before<br>surgery | After Before surgery | I Control<br>(mo)*    | II Control<br>(mo)* | III Control<br>(mo)* | Before<br>surgery | After surgery               | Time for regression (mo) |    |
| Barrett's | esopha  | gus                      |                             |                      |                   |                      |                       |                     |                      |                   |                             |                          |    |
| Woman     | 46      | 37                       | 29                          | 20                   | Esophagitis       | Normal               | $\mathbf{IM}$         | Carditis (14)       | Carditis (28)        |                   | (-)                         | (-)                      | 14 |
| Man       | 33      | 61                       | 42                          | 20                   | Esophagitis       | Normal               | $\mathbf{IM}$         | IM (26)             |                      |                   | (+)                         | (-)                      | No |
| Woman     | 52      | 35                       | 22                          | 20                   | Normal            | Normal               | IM +<br>LGD           | IM +<br>LGD (24)    | IM (36)              | Carditis (48)     | (-)                         | (-)                      | 48 |

# No report in the literature on the efficacy of the RYGB on post SG Barrett's esophagus

| I          |      |                 |        |     |              |        |               |               |               |     |     |    |
|------------|------|-----------------|--------|-----|--------------|--------|---------------|---------------|---------------|-----|-----|----|
| Woman      | 56   | 36              | 31     | 40  | Peptic ulcer | Normal | IM            | Funditis      | Funditis      | (-) | (+) | 24 |
|            |      |                 |        |     |              |        |               | (24) +        | (36) +        |     |     |    |
|            |      |                 |        |     |              |        |               | Carditis      | Carditis      |     |     |    |
| Woman      | 44   | 40              | 29     | 60  | Esophagitis  | Normal | $\mathbf{IM}$ | IM (18)       | IM (28)       | (-) | (-) | No |
| Man        | 39   | 45              | 32     | 80  | Esophagitis  | Normal | $\mathbf{IM}$ | IM (33)       | IM (72)       | (-) | (-) | No |
| Woman      | 62   | 44              | 29     | 120 | 2 Peptic     | Normal | $\mathbf{IM}$ | IM (12)       | IM (24)       | (-) | (-) | No |
|            |      |                 |        |     | ulcer        |        |               |               |               |     |     |    |
|            |      | Mean 43.2       | 29.4   |     |              |        |               |               |               |     |     |    |
| Intestinal | meta | plasia of the o | cardia |     |              |        |               |               |               |     |     |    |
| Woman      | 43   | 36              | 22     | _   | Normal       | Normal | $\mathbf{IM}$ | Carditis (14) | Carditis (28) | (-) | (-) | 14 |
| Woman      | 56   | 39              | 25     | _   | Normal       | Normal | $\mathbf{IM}$ | IM (12)       | IM (24)       | (-) | (+) | No |
| Woman      | 47   | 38              | 23     | _   | Normal       | Normal | $\mathbf{IM}$ | Carditis (14) | Carditis (34) | (+) | (-) | 14 |
|            |      | Mean 37.7       | 23.3   |     |              |        |               |               |               |     |     |    |
|            |      |                 |        |     |              |        |               |               |               |     |     |    |

BMI = body mass index (Kg/M2); BE = Barrett's esophagus; IM = intestinal metaplasia; LGD = low-grade dysplasia.

<sup>\*</sup>Endoscopy performed after surgery (mo).

#### Conversion of LSG to LRYGP for GERD

 Table 1
 Review of studies showing resolution of GERD after conversion surgery

|                  |    | 40.002                               | 0.00                                 |                                                   |
|------------------|----|--------------------------------------|--------------------------------------|---------------------------------------------------|
| Study            | N  | Time (primary to conversion surgery) | Complete resolution of GERD symptoms | Partial resolution of GERD symptoms (needing PPI) |
| Abdemur et al.   | 9  | NA                                   | 7                                    | 2                                                 |
| Gautier et al.   | 6  | 28.1 months (mean)                   | 6                                    | 0                                                 |
| Langer et al.    | 3  | 39.3 months (mean)                   | 3                                    | 0                                                 |
| Van Rutte et al. | 5  | NA                                   | 3                                    | 2                                                 |
| Hendricks        | 4  | 30 months (mean)                     | 3                                    | 1                                                 |
| Parmar et al.    | 10 | 16 months (mean)                     | 8                                    | 2                                                 |
| Iannelli et al.  | 11 | 18.6 months (mean)                   | 11                                   | 0                                                 |
| Amiki et al.     | 9  | 2 months- 8 years 9 months           | 6                                    | 3                                                 |
| Yorke et al.     | 12 | 41.8 months (mean)                   | 9                                    | 0                                                 |
|                  |    |                                      |                                      |                                                   |

the liver. The Endo-GIA stapler (Medtronic, Minneapolis, MN) with a 60-mm white reload is used to divide the lesser omentum distal to first 2 branches of the left gastric artery. A small gastric pouch was created using Endo-GIA 60-mm purple or black cartridges to transect the existing gastric sleeve approximately 6–8 cm below the gastro-esophageal junction.



# Length and shape of the pouch

Conversion of SG to LRYGBP (Bell rod pouch)



Technique chirurgicale de Roux-en-Y gastric bypass secondaire

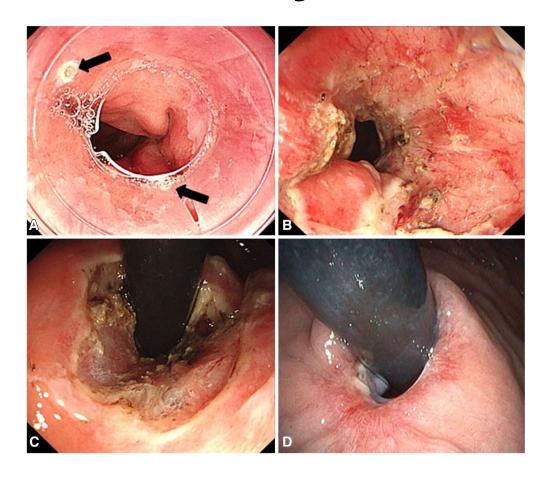
- A) Libération de l'œsophage abdominal
- B) Cure de hernie hiatale postérieure
- C) Création de la poche gastrique par agrafage en amont de la cicatrice fibreuse

# **Agenda**

Preamble
GERD
Barrett's esophagus

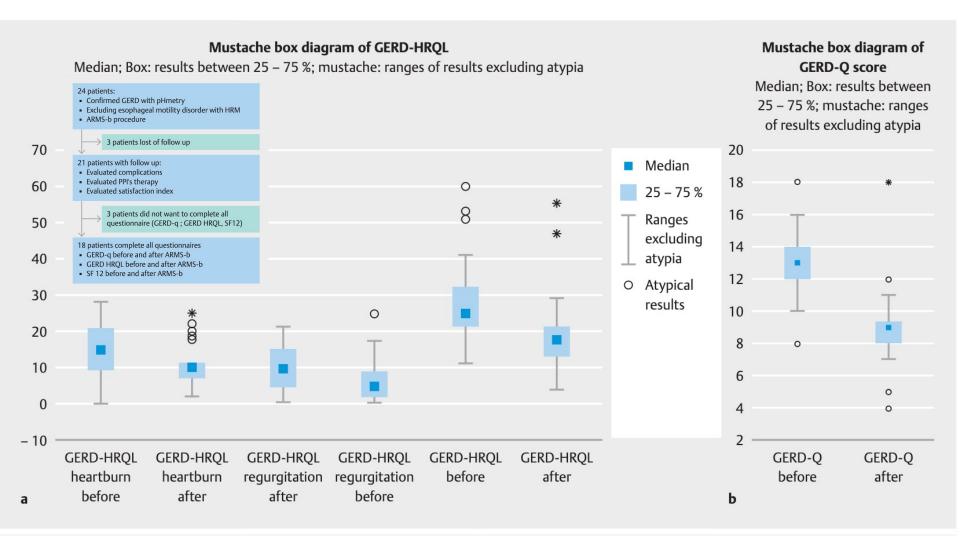
The REFSLEEVE Study

**Barrett's and HGD + ADK (after SG)** 


What to do in case of Barrett's after SG?

**Futures directions** 

#### **Futur directions**


# Anti-reflux mucosectomy

Mucosectomy of 3/4 of the circumference at the GEJ in order to reduce the diameter due to scarring retraction



#### **Futur directions**

# Anti-reflux mucosectomy



#### **Futur directions**

# Magnetic sphincter augmentation

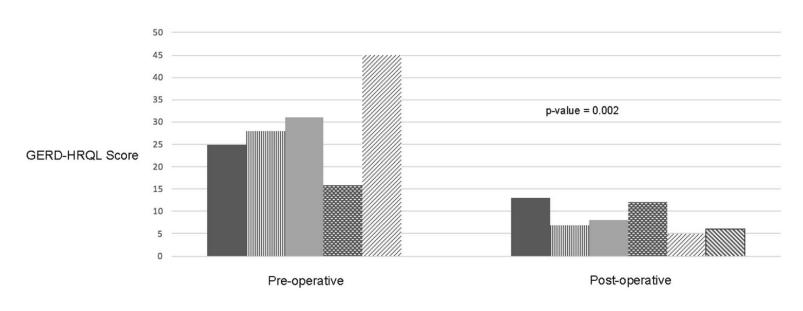



Fig. 1 Denotes the trend in reduction of GERD-HRQL scores from the pre-operative phase, to post-operative follow-up, each bar representing one individual patient

#### **Conclusions**

GERD is a common condition in the morbidly obese and should be seen as a complex and heterogeneous disease.

SG is associated with a high prevalence of GERD.

SG may result in a high rate of Barrett's esophagus at 5 years (intestinal metaplasia – short segment) and systematic endoscopy at 5 years seems appropriate.

The number of reported cases of ADK and HGD in SG patients is in contrast with expected number of cases based on the evolution of BE in the general population (0.26% HGD & ADK).

RY conversional surgery for PPI resistant GERD symptoms and or Barrett's esophagus should be done only in selected cases and with an appropriate surgical technique.

# Thank you for your attention

We're designing a retrospective study to collect data on the effect of RYGB conversion of post SG Barrett's esophagus.

Please, contact me if you wish to participate in.
this study

iannelli.a@chu-nice.fr